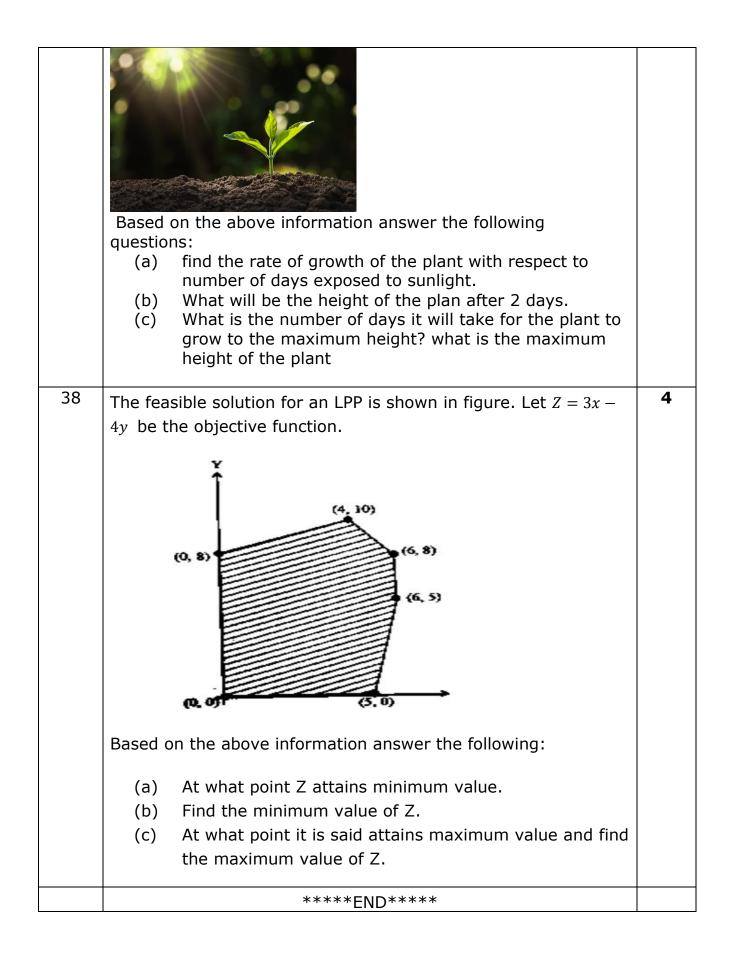


GRADE: XII Date:13-09-2023

FIRST TERM EXAMINATION 2023 APPLIED MATHEMATICS (241)

MARKS: 80 TIME: 3 HOURS

Genera	al Instructions :	
1. 2.	This Question paper contains - five sections A,B,C,D and E. Each section is compulsory. However, there is some internal choice in some questions. Section A has 18 MCQ's and 02 Assertion Reason based questio mark each.	ns of 1
3. 4. 5. 6.	 Section B has 5 Very Short Answer(VSA) questions of 2 marks each Section C has 6 Short Answer(SA) questions of 3 marks each. Section D has 4 Long Answer(LA) questions of 5 marks each. Section E has 3 source based/case based/passage based/integrated units of assessment (04 marks each) with sub parts. 	ach.
7.	Internal Choice is provided in 2 questions in Section-B, 2 question Section-C, 2 Questions in Section-D. You have to attempt onl alternatives in all such questions.	
Q.No.	Questions	Mark
	SECTION A (Multiple Choice question)	
	Each question carries 1 mark	
1	Each question carries 1 markIf $100 \equiv x(mod7)$, then the least value of x is :	1
1	Each question carries 1 mark	1
	Each question carries 1 markIf $100 \equiv x(mod7)$, then the least value of x is :(a)2(b)3(c)6(d)4	
	Each question carries 1 markIf $100 \equiv x(mod7)$, then the least value of x is :(a)2(b)3(c)6(d)4The remainder when 5 ⁶¹ is divided by 7 is:(a)2(b)1(c)5(d)4The value of $20{12}12$ isThe value of $20{12}12$ is(a)9(b)12(c)8	
2	Each question carries 1 markIf $100 \equiv x(mod7)$, then the least value of x is :(a)2(b)3(c)6(d)4The remainder when 5^{61} is divided by 7 is:(a)2(b)1(c)5(d)4(c)5(d)4The value of $20{12}12$ is	1


	$\left (d) \frac{2xy}{x+y} > \sqrt{xy} \right $	
6	Let $p>0$ and $q<0$ and $p,q\in Z$, then choose the correct inequality from thr given below options to complete the statement:	1
	(a)> $\begin{array}{c} p+qp-q\\ (b)< (c)\leq (d)\leq \end{array}$	
7	If $x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$, then the value of x and y are :	1
	(a) -4 , 3 (b) 3 ,-4 (c) 3, -3 (d) 4 , -4	
8	If matrix A is given by A = $\begin{bmatrix} a_{ij} \end{bmatrix}_{2 \times 2}$ where $a_{ij} = i + j$ (a) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$	1
9	If A is a square matrix of order 3×3 such that $ A = 4$, then	1
	3A is equal to:(a)27(b)81(c)108(d)256	
10	(a)27 (b)81 (c)108 (d)256 If $\begin{bmatrix} 1 & 3 & 9 \\ 1 & x & x^2 \\ 4 & 6 & 9 \end{bmatrix}$ is singular matrix, then x =	1
	(a)3 (b) 3 0r 6 (c)3 or $\frac{3}{2}$ (d)-3 or $-\frac{3}{2}$ If A = $\begin{bmatrix} 7 & -3 \\ -5 & 2 \end{bmatrix}$ then A is:	_
11.	If A = $\begin{bmatrix} 7 & -3 \\ -5 & 2 \end{bmatrix}$ then $ A $ is:	1
12.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
12.	If A = $\begin{bmatrix} 0 & -1 & -2 \\ -7 & 1 & 2 \end{bmatrix}$ then the cofactor of a_{23} is:	-
	(a)-16 (b)-20 (c)-18 (d)-17	
13	If the total revenue received from the sale of x units of product is given by $R(x) = 3x^2 + 36x + 5$ then the marginal revenue when x=15 is:	1
	(a) 116 (b)96 (c)90 (d)126	
14	The equation of the normal to the curve $y = x^2 - x$ at (1,0) is : (a) $x + y = 0$ (b) $x - y = 0$ (c) $x + y = 1$ (d) $x - y = 1$	1
15.	Let f have second derivative at c such that $f'(c) = 0$ and $f''(c) > 0$, then c is a point of (a)local maxima (b)point of inflection (c)local minima	1

	(d) <i>extremum</i>	point			
16.	Demand curr (a) Quantity (b)Income a (c)Price and	ve shows the relationsh demand and quantity s nd quantity demand of quantity of a commod and price of a commodi	supply of a comm a commodity lity	odity	1
17.	_	3	a commodity is M	R = 2x -	1
18		region for LPP is shown e the objective function			1
	(a) 1	(b)-2	(c)-1	(d)0	
	AS	SERTION-REASON B	ASED QUESTION	IS	
	followed by a out of the fol	ing questions(19&20), a statement of Reason (lowing choices.	R). Choose the co	rect answer	
		nd R are true and R is th			
		nd R are true but R is no	ot the correct expla	nation of A.	
	(c) A is true l	out R is false.			
	(d) A is false	but R is true.			
19	9 attains its of a is 120.	t is given that at $x=1$, maximum value, on the ind the value of a put	e interval [0,2]. T		1
20	Assertion: If	an LPP attains its max feasible region then it	imum value at tw		1

	Reason: If the value of the objective function of an lpp is same at two corners then it is same at every point on the line joining two corner points.	
	SECTION B	
	(This section comprises of very short answer type-questions	
	(VSA) of 2 marks each)	
21	Solve the following inequality and graph the solution on the number line:	2
	$2x - 5 \le x + 2 \le 3x + 8$	
22	If $A = \begin{bmatrix} 4 & 1 \\ 5 & 8 \end{bmatrix}$, show that $A + A^T$ is a symmetric matrix.	2
	OR	
	If the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 2 \\ 3 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$ find AB	
	If the matrix $A = \begin{bmatrix} 0 & -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 3 \end{bmatrix}$ find AB	
23	A manufacturer produces nuts and bolts. It takes 1 hours of work on	2
	machine A and 3 hours on machine B to product a package of nuts.	
	It takes 3 hours on machine A and 1 hour on machine B to produce	
	a package of bolts. He earns a profit of Rs 17.50 per package on nuts and Rs 7 per package of bolts. How many packages of each	
	should be produced each day so as to maximize his profits if he	
	operates his machines for at the most 12 hours a day? From the	
	above as a linear programming problem and solve it graphically.	
24	A man rows 15 km upstream and 25 km downstream each in 5	2
27	hours. Find the speed of the stream .	~
	OR	
	A can run 40 m while B runs 50 m in the same time. In a 1000	
25	m race find by how much distance B beats A.	2
25	Find $\frac{dy}{dx}$ when $x = 4t$ and $y = \frac{4}{t}$	2
	SECTION C	
	(This section comprises of short answer type questions (SA)	
26	of 3 marks each) Evaluate: $\int \frac{2x+1}{(x+1)(x-2)}$	3
20		
	OR Evaluator ((1 + v) logu du	
	Evaluate: $\int (1+x) \log x dx$	
27		3
	Find the value of 2a+3b-c if $A = \begin{bmatrix} 0 & -1 & 28 \\ a-8 & 0 & 3b \\ -c+2 & 2 & 0 \end{bmatrix}$ is a skew	
	symmetric matrix.	
28	Find the intervals in which the function $f(x) = \frac{x^4}{4} - 2x^3 + \frac{11x^2}{2}6x$ is	3
	strictly increasing and strictly decreasing.	
	OR	

	The surface area of a spherical balloon is increasing at the rate of 2 cm ² /sec.Find the rate of change of its volume and its radius is 6cm.	
29		3
25	Demand and supply functions are $p = 50 - 8x$ and $p = 5+x$	0
	respectively .Find the consumer surplus and producer surplus at	
	equilibrium price.	-
30	Two pipes A and B running together can fill a tank in 6 minutes	3
	.If pipes A takes 5 minutes less than B to fill the tank, find the	
	time taken by pipe B to fill the tank alone.	
31	Solve $:\frac{3}{r-3} < 1$	3
	SECTION D	
	(This section comprises of long answer-type questions (LA) of 5 marks each)	
32	The demand of a certain product is represented by the function $p =$	5
	$200 + 20x - x^2$ where x is the number of units demanded and p is	
	the price per unit.	
	(1) find the marginal revenue	
	(2) obtain the marginal revenue when 10 units are sold	
33	 (3) calculate R(11) – R(10) Using matrix method solve the following system of equations: 	5
55	Using matrix method solve the following system of equations.	5
	3x + 2y - 2z = 3	
	x + 2y + 3z = 6	
	2x - y + z = 2	
	OR	
	Using Cramer's method solve the following system of equations:	
	6x + y - 3z = 5	
	x + 3y - 2z = 5	
	2x + y + 4z = 8	
34	Minimise $Z = -3x + 4y$ subject to	5
	$x + 2y \le 8, \ 3x + 2y \le 12, \ x \ge 0, \ y \ge 0$	

35	If $A = \begin{bmatrix} -1\\ 2\\ 3 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & -1 & -4 \end{bmatrix}$, verify that $(AB)' = B'A'$ OR Find the values of x, y, z if the matrix $A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ z & -y & z \end{bmatrix}$ satisfies the equation $A'A = I_3$ SECTION E	5
	(This section comprises of 3 case study/passage – based questions of 4 marks each with two sub parts. First two case	
	study questions have 3 sub – parts (i), (ii), (iii) of marks 1,1,2	
	respectively)	
36	To enhance the reading skills of class XII students, the school nominates you and your friends to set a class library.There are three section A,B and C of class XII.There are 32 students in Section A, 36 students in Section B, and 40 students in Section C.	4
	Based on the above information , answer the following	
	question. (a) Find the reminder when total number of students is divided by 7.	
	(b)Find the unit digit of 3^{108} (c) Find the value in the set {1,2,3,4} such that number of students in section A and C = $x(mod 7)$	
37	The relation between the height of the plant with respect to exposure to sunlight is given by the following equation $y = 4x - \frac{1}{2}x^2$ where x is the number of days exposed to sunlight.	4

